
LA-UR-18-29012
Approved for public release; distribution is unlimited.

Title: Petri Nets for Adversarial Models using Monte Carlo Simulation

Author(s): Clegg, Benjamin Wyatt
Collins, David H. Jr.
Huzurbazar, Aparna V.

Intended for: Report

Issued: 2018-09-21



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



Petri Nets for Adversarial Models using Monte

Carlo Simulation

B. Wyatt Clegg
Department of Statistics, Brigham Young University

David H. Collins
Aparna V. Huzurbazar

Statistical Sciences Group, Los Alamos National Laboratory

Abstract

We describe an object-oriented framework and user interface for developing
models of adversarial scenarios, implemented as stochastic Petri nets. The
framework is implemented using the statistical computing language R, and
provides facilities for eliciting models from subject matter experts, displaying
models graphically, simulating scenario execution, and presenting scenario
outcomes and statistics.

1 Introduction

Adversarial scenarios, such as attacks on guarded facilities, are of great
interest to the defense and intelligence communities. We describe a tool,
based on stochastic Petri nets, that facilitates conceptualization of these
scenarios and evaluation of alternatives for defending against attacks.

Adversarial situations typically involve multiple autonomous actors op-
erating concurrently and interactively. These are difficult to model using
tools such as Markov processes, game theory, etc. Petri nets (Reisig (1982)),
originally developed to model concurrency in computer architectures, offer
a powerful graphic tool for eliciting such scenarios from experts, as well as
a formalism that allows inference about scenario outcomes using analytic
or simulation methods. For details on adversarial scenarios and a compari-
son of modeling methods, including Petri nets, see Collins and Huzurbazar
(2015).

1



Figure 1: Graphical representation of a Petri net model.

We have implemented an object-oriented framework and user interface
for developing models of adversarial scenarios, simulating scenario execu-
tion, and presenting scenario outcomes and statistics. The framework is
based on reference classes in the R statistical computing language (R Devel-
opment Core Team (2008)). Reference classes provide a fully object-oriented
capability, including object encapsulation, methods, classes, and inheritance
(Chambers (2014)). The framework also includes a graphical user interface
(GUI) built using the R shiny package (Beeley (2016)), for displaying models
and simulation outputs graphically.

2 Implementation

Figure 1 shows a graphical representation of a simple Petri net. The net is
composed of places, represented as circles, transitions, represented as rect-
angles, tokens, represented as dots, and arcs (arrows) connecting places and
transitions. Activities in a scenario are represented by the flow of tokens
through the net. For further details see, e.g., Reisig (1982, 1992). Figure 2 is
a diagram of the corresponding object structure within a program built using
the framework. The correspondence of objects in the model with objects in
the program greatly facilitates model development, graphical displays, and
simulation.

Figure 3 shows the graphical display of a net in the user interface to
the framework. In this case, the net was loaded from a template library,

2



Figure 2: Object structure in the implementation of a Petri net model.

which allows reuse of common scenarios. Scenarios can be modified, or
built from scratch, by adding places, transitions, and arcs. When a place
is added, the initial count of tokens in the place is also specified. After
running a simulation of the scenario, with parameters specified by the user,
the output is shown in Figure 4.

Object classes used in the implementation include PetriNet, Place, Tran-
sition, Token, Arc, and specialized subclasses of these such as Source (a sub-
class of Transition) and Sink (a subclass of Place). Additional subclasses
can be created to implement specialized behavior, but these require pro-
gramming and cannot be directly created by users of the GUI.

In the remainder of this paper, methods1 implemented in a given class
are designated as ClassName::MethodName.

2.1 Simulation algorithm

This is a general overview of the process employed to simulate iterations of
a PetriNet object. The following PetriNet object methods will be described:

• PetriNet::Branches

1For those familiar with C++, methods there are called member functions

3



Figure 3: Graphical display of a Petri net model. The panel on the left
allows adjustment of the graphics.

4



Figure 4: Output from simulation of the Petri net.

5



• PetriNet::FireNet

• PetriNet::PrintFinish

• PetriNet::Iterate

• PetriNet::ClearNet

• PetriNet::GetOutArcsFrom

• PetriNet::InhibitableSweep

• PetriNet::InhibitSweep

We will also discuss the following subclasses of Place:

• Switch objects inherit all the attributes of Place objects, but Switch
objects allow for multiple arcs to exit. Furthermore, Switch objects will
ensure that each Arc instance only takes the Token objects demanded
by the multiplicity of the Arc. Otherwise, all Token objects will be
passed along a functioning Arc out of a Place object.

• Sluice inherits the attributes of Place; places should be designated as
Sluice objects when more than one arc exits or enters a place but only
one arc will fire at a time. Sluice implements the InhibitSweep and
InhibitableSweep methods so pathways will be properly fired.

• Sink objects inherit all attributes of Place objects. No arcs exit a
Sink object. Furthermore, each Sink object has an additional field,
isWinner, indicating whether the sink corresponds to the desired result
of the simulation.

2.2 Execution algorithm

Each iteration is contained within the method PetriNet::Iterate. Iterate
begins by sweeping through the Petri net using PetriNet::InhibitableSweep.
After InhibitableSweep performs its function, all places where token objects
may end up due to Inhibitor action are labeled. This label is reflected in the
IsWait field within a place object.

PetriNet::FireNet is next employed. Within FireNet, the algorithm seeks
out a Transition object of the type Source. Once identified, the Source::Generate
method is called to generate the initial tokens for a simulation. These tokens
are then passed to the first downstream Place object.

6



Once the tokens have been passed, the name field of the Place object is
passed to PetriNet::Branches. Branches then starts at the place specified
and passes tokens according to the specifications of the PetriNet object.
Branches employs recursion, which explores and passes tokens down every
possible path downstream of the original Place referenced when the function
was called.

PetriNet::Branches will stop evaluating once it reaches a place labeled
by InhibitableSweep. Tokens should stop at Places where they must be
compared to determine the action of Inhibitor objects. For example, in a race
of any kind, times of contestants are compared at the finish line, the results
of that comparison determining which contestant wins. After Branches runs
once, a similar comparison is made. PetriNet::InhibitSweep evaluates every
inhibitor arc in the Petri net, and inhibits transitions according to the results
of comparing tokens.

Note that during this step, the differences between Switch, Sluice, and
Sink place types are incorporated. Specific references within the code all
pertain to the desired attributes mentioned above.

When the simulation is complete, the PetriNet object is evaluated by
the method PrintFinish, which returns a vector of length 4. Items one and
three report the times of the fastest favored actor and fastest adversarial
actor, respectively. Item two is a Boolean indicator, reporting whether the
favored force was fastest. Item four indicates whether or not an asset was
obtained by the favored actor.

Error messages will also be reported in this output. If a force was in-
hibited from progressing forward, their time will be reported as infinity.
Furthermore, if both forces have infinite times, the second item will report
a negative 1. However, despite these errors the result will still be reported.

PetriNet::Iterate then uses the method ClearNet to reset the PetriNet
object to its initial state. Note that this may not correspond exactly to
the state before running Iterate if changes have been made to the PetriNet
after the original Place, Transition, Arc, and Inhibitor objects were created
within the PetriNet object. ClearNet will work within the constraints of the
GUI created for running PetriNet simulations.

Iterate then completes its run by returning the vector of four elements
mentioned above. Iterate is used in simulate*.R scripts to create a results
matrix from which summary statistics can be obtained.

7



References

C. Beeley. Web Application Development with R Using Shiny. Packt Pub-
lishing Ltd., Birmingham, UK, second edition, 2016.

J. M. Chambers. Object-oriented programming, functional programming
and R. Statistical Science, 29(2):167–180, 2014.

D. H. Collins and A. V. Huzurbazar. Petri net models of adversarial scenarios
in safety and security. Technical Report LA-UR-15-24012, Los Alamos
National Laboratory, Los Alamos, NM, 2015.

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria,
2008. URL http://www.R-project.org.

W. Reisig. Petri Nets: An Introduction. Springer-Verlag, Heidelberg, 1982.

W. Reisig. A Primer in Petri Net Design. Springer-Verlag, Heidelberg,
1992.

8


